<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USING THE MEL</td>
<td>PRACTICING STEEP TURNS IN SIM</td>
</tr>
<tr>
<td>APPLICATION OF OEBs</td>
<td>PREDICTIVE AND REACTIVE WINDSHEAR</td>
</tr>
<tr>
<td>ECAM TASKSHARING</td>
<td>TCAS EVENT</td>
</tr>
<tr>
<td>HANDLING ADVISORIES</td>
<td>UPSET RECOVERY</td>
</tr>
<tr>
<td>RED AND AMBER LAND ASAP</td>
<td>GPWS EVENT</td>
</tr>
<tr>
<td>ADEQUATE AND SUITABLE AIRPORT</td>
<td>EMERGENCY DESCENT</td>
</tr>
<tr>
<td>ENGINE START MALFUNCTIONS</td>
<td>ABNORMAL SLATS / FLAPS</td>
</tr>
<tr>
<td>REJECTED TAKEOFF</td>
<td>DUAL HYDRAULIC FAILURE</td>
</tr>
<tr>
<td>EMERGENCY EVACUATION</td>
<td>ENG 1+2 BLEED FAULT</td>
</tr>
<tr>
<td>ENGINE FAILURE AFTER V1</td>
<td>DUAL ENGINE FAILURE</td>
</tr>
<tr>
<td>ENGINE FAILURE DURING CRUISE</td>
<td>HANDLING SMOKE AND FUMES</td>
</tr>
<tr>
<td>ONE ENGINE INOPERATIVE GO-AROUND</td>
<td>MISC REFERENCES</td>
</tr>
<tr>
<td>PRACTICING STALL RECOVERY IN SIM</td>
<td>DISCLAIMER</td>
</tr>
</tbody>
</table>
USING THE MEL

HOW TO USE THE MEL ENTRIES SECTION?

Applicable to: ALL

This section lists all the ECAM alerts. The ECAM monitors the condition of some systems. In the case of malfunction of one or more systems, the ECAM provides the flight crew with an associated ECAM alert. Refer to MI-00-08 ECAM and MAINTENANCE STATUS.

For each ECAM alert, this section indicates the associated MEL item (if any) to be applied for the dispatch.

When an ECAM alert reports a system failure, the flight crew and the maintenance personnel should refer to this section as a user-friendly entry point in the MEL.

AIRCRAFT STATUS COLUMN

An ECAM alert may cover one or several failure modes of the monitored system.

For each failure mode, the AIRCRAFT STATUS column may indicate the following status:

- **NIL**: When there is only one failure mode, the AIRCRAFT STATUS column indicates NIL.

 When there are several failure modes, the AIRCRAFT STATUS column might give a short description of each failure mode and/or a simple way to identify each failure mode. If the MEL does not give this information, the column displays NIL.

- Actual alert: This indicates that the monitored system is inoperative. The failure mode is the failure of the monitored system.

- False alert: This indicates that the monitoring system is inoperative. The failure mode is the failure of the monitoring system. The monitored system remains fully operative.

The PIAC is responsible for identifying the failure mode.

<table>
<thead>
<tr>
<th>ECAM Alert: VENT AVNCS SYS FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRCRAFT STATUS</td>
</tr>
<tr>
<td>If the VENT SKIN VALVE FAULT alert is displayed on the EWD due to the Avionics Skin Air Outlet valve.</td>
</tr>
<tr>
<td>If the VENT SKIN VALVE FAULT alert is displayed on the EWD due to the Avionics Skin Air Inlet valve.</td>
</tr>
<tr>
<td>NIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION OF DISPATCH</th>
</tr>
</thead>
</table>

CONDITION OF DISPATCH COLUMN

For each failure mode, the CONDITION OF DISPATCH column gives the applicable MEL item(s) for dispatch. But the flight crew is responsible for checking that the condition of the aircraft systems/components complies with the MEL requirements. If not, the dispatch of the aircraft is not permitted.

The CONDITION OF DISPATCH column may also give the following alternate possibilities:

- **NO DISPATCH**: It is not permitted to dispatch the aircraft when the ECAM displays this alert.

- Not related to MEL: The ECAM alert does not report a system failure but a reversible abnormal condition such as the state of a system or an aircraft configuration or an external condition. This condition is not a system failure and is not related to MEL. The MEL shall not be used. This is not a NO-GO situation. The corrective action to revert to normal condition is immediate, obvious or well known by flight crew and/or maintenance personnel.
Example

After Checking the MEL Entry, you refer to MEL Item for dispatch if it is allowed e.g. in this case once it has been determined that the alert is not real only then you go to item 28-46-04, not otherwise.

Some items have operational and maintenance procedures like the one mentioned below:

In this case after checking the MEL item you go to the operational procedures section:

FLIGHT PREPARATION/LIMITATIONS

Maximum landing capability is CAT 3 Single.
APPLICATION OF OEBs

OEB IN THE QRH

Each FCOM OEB has an associated “OEB PROC” in the OEB section of the QRH, that includes:
- The title of the OEB PROC,
- The “ECAM ENTRY” field:
 This section identifies whether or not one of the possible conditions for applying the OEB PROC is an ECAM warning/caution.
 The flight crew must disregard the ECAM procedure and/or STATUS of the ECAM alerts listed in the “ECAM ENTRY” field and must apply the QRH’s OEB procedure instead.
- The OEB operational procedure(s) that the flight crew must apply.

When to Ask for “Any OEBs”

ECAM TASKSHARING

The flight crew should apply any OEB that affects an ECAM alert. To apply the ECAM procedure, the flight crew should use the following tasksharing method:

<table>
<thead>
<tr>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>First pilot who notices</td>
<td>MASTER WARNING/CAUTION</td>
</tr>
<tr>
<td>For each ECAM procedure:</td>
<td>“Title of failure”</td>
</tr>
<tr>
<td></td>
<td>………………………………</td>
</tr>
<tr>
<td></td>
<td>“ECAM ACTIONS”</td>
</tr>
<tr>
<td></td>
<td>………………………………</td>
</tr>
</tbody>
</table>

This is logical because if OEB overrules an ECAM procedure then it has to be considered first e.g.

<table>
<thead>
<tr>
<th>A318/A319/A320/A321 QUICK REFERENCE HANDBOOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATIONS ENGINEERING BULLETINS</td>
</tr>
<tr>
<td>LIST OF EFFECTIVE OPERATIONS</td>
</tr>
<tr>
<td>ENGINEERING BULLETIN</td>
</tr>
<tr>
<td>OEBPROC 1/2</td>
</tr>
<tr>
<td>19 APR 17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEB47 Issue 2</td>
<td>HYD ENG PUMP LO PR followed by a HYD RSVR OVHT</td>
</tr>
<tr>
<td></td>
<td>ECAM Entry HYD G ENG 1 PUMP LO PR followed by a HYD Y RSVR OVHT</td>
</tr>
</tbody>
</table>

HYD ENG PUMP LO PR FOLLOWED BY A HYD RSVR OVHT

ECAM ENTRY

HYD G ENG 1 PUMP LO PR followed by a HYD Y RSVR OVHT

PROCEDURE

- If a HYD G ENG 1 PUMP LO PR ECAM caution is followed by a HYD Y RSVR OVHT ECAM caution, disregard the HYD Y RSVR OVHT ECAM procedure, and apply the following procedure to stop the overheat situation:

<table>
<thead>
<tr>
<th>HYD Y RSVR OVHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTU OFF</td>
</tr>
<tr>
<td>YELLOW ENG 2 PUMP KEEP ON</td>
</tr>
</tbody>
</table>
ECAM TASKSHARING

<table>
<thead>
<tr>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>First pilot who notices</td>
<td>MASTER WARNING/CAUTION………………..RESET</td>
</tr>
<tr>
<td>For each ECAM procedure:</td>
<td></td>
</tr>
<tr>
<td>"Title of failure"…………………………..ANNOUNCE</td>
<td></td>
</tr>
<tr>
<td>ECAM………………………………………..CONFIRM</td>
<td></td>
</tr>
</tbody>
</table>

The PM should check/inspect the overhead panel and/or associated SD, in order to analyze and confirm the failure, before they take any action. The flight crew should keep in mind that the sensors on the overhead panel and/or SD may be different from the sensors that trigger the failure.

OEB………………………………………..CONSIDER

Call - "My Radios"

'ECAM ACTIONS"……………………………..ORDER |

Apply the Tasksharing Rules and Communication for Abnormal Operations
Refer to AOP-20 General

ECAM/OEB ACTIONS…………………………..PERFORM |

"CLEAR (name of the system)?"………………..REQUEST |

ECAM ACTIONS PERFORMED……………………CHECK |

"CLEAR (name of the system)"………………..CONFIRM |

CLR pb……………………………………..PRESS |

Before the PM presses the CLR pb, the flight crew should carefully check that all actions have been performed.

For each System Display (SD) page:

SD page……………………………………..ANALYZE |

"CLEAR (name of the system)"………………..CONFIRM |

CLR pb……………………………………..PRESS |

When STATUS page appears:

"STOP ECAM"……………………………..ORDER |

"STATUS"………………………………………..ANNOUNCE |

ECAM ACTIONS……………………………..STOP |

STATUS………………………………………..READ |

The procedures associated with the STATUS should be previewed to evaluate the associated workload. They should be performed at the appropriate flight phase.

"REMOVE STATUS?"…………………..REQUEST |

"CONTINUE ECAM"……………………………..ORDER |

"ECAM ACTIONS COMPLETED"…………………..ANNOUNCE |

"REMOVE STATUS"……………………………..CONFIRM |

STS pb……………………………………..PRESS |

1. For a system reset refer to “QRH Abnormal & Emergency procedures – System Resets”.

5
When ECAM / QRH / OEB actions are completed, resume **normal operations task sharing** rules. Time permitting, **review FCOM** for additional information on applicable procedure(s). However, do not prolong the flight to refer to the FCOM. Thereafter, carry out situation **ASSESSMENT, DECISION** and **COMMUNICATION**.

A. Assessment

Technical

- Recall the Status page and check:
 - Failures and their consequences.
 - Fuel remaining & penalty at destination / diversion airport.
 - Landing performance & penalty at destination / diversion airport.

Operational

- Based on technical assessment and subject to weather:
 - Continue to Destination.
 - Divert to an Alternate.
 - Hold or Land ASAP.

Commercial

- Based on operational assessment, consider the aftermath of diversion:
 - Passengers: Medical emergencies / Logistics.
 - Aircraft: Maintenance / Fueling.
 - Crew: Availability / FDTL.

D. Decision

- Settle a consensus before making a decision.
- Decision to be endorsed by the Captain.

C. Communication

ATC

- Use DISTRESS (MAYDAY) or URGENCY (PAN) call as required.
- Request shorter vectors / holding etc.
- Request for ground assistance e.g. fire tender etc.

COMPANY

Inform company about the situation and intentions.

CABIN CREW

Captain will say over the PA “**PURSER TO THE FLIGHT DECK IMMEDIATELY**”. Then tell him: “**THIS IS A NITS DRILL PLEASE LISTEN CAREFULLY**”

- **Nature**
 - Nature of the Emergency, i.e. engine fire, decompression, technical problem
- **Intention**
 - Intention of the Captain, i.e. whether to make an emergency landing or ditching, whether to divert, continue or return to base
- **Time**
 - Time remaining airborne, i.e. Time available or Time – Short Notice
- **Special Instructions**
 - Special instructions given by the Captain, i.e. any know factors affecting evacuation and exits to be used.

- Captain’s briefing will be acknowledged by repeating back the NITS.
- Watches must be synchronized.

PASSENGERS

Inform them what’s going on and reassure them.

*Decision-making models like the common **FORDEC** acronym can also be used. Facts (technical status of the aircraft), Options (based on the facts i.e. continue, hold, divert etc.), Risks (or benefits of each option), Decision (about which option to go for), Execute (your decision by doing the needful), Check / Communicate (if everything is going according to the plan / Communicate to ATC, Company, Cabin, Passengers).*
HANDLING ADVISORIES

- The flight crewmember that first notices an advisory announces “ADVISORY on XYZ system”.
- Then, PF requests PM to monitor the drifting parameter.
- If time permits, PM may refer to the QRH – Abnormal & Emergency Procedures – ECAM Advisory:
 - To check advisory triggering conditions.
 - To find the recommended actions.

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>CONDITIONS</th>
<th>RECOMMENDED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB VERTICAL SPEED</td>
<td>IAS > 1,800 fpm</td>
<td>CPC changeover is recommended:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODE SEL: MAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wait 10 s then:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODE SEL: AUTO</td>
</tr>
<tr>
<td>CAB ALTITUDE</td>
<td>altitude ≥ 8,800 ft</td>
<td>PACK FLOW: HI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODE SEL: MAN</td>
</tr>
<tr>
<td>ΔP ≥ 1.5 PSI</td>
<td>in phase 7</td>
<td>Manual pressure control</td>
</tr>
</tbody>
</table>

RED AND AMBER LAND ASAP

Red LAND ASAP information is applicable to a time-critical situation. If it is part of the procedure, land as soon as possible at the nearest airport at which a safe landing can be made. If amber LAND ASAP is part of the procedure, consider landing at the nearest suitable airport. The suitability criteria should be defined in accordance with the Operator’s policy.

ADEQUATE AND SUITABLE AIRPORT

An airport is considered “Adequate” by Operator and agreed with the national authority based on the aeroplane performance requirements applicable at the expected landing weight. Following consideration should be met at the expected time of use:
- a. Availability of airport.
- b. Adequate runways length
- c. Over flying and landing authorizations.
- d. Capability of ground operational assistance.
- e. ATC, MET, AIS offices, lighting, rescue and fire-fighting category.
- f. At least one let-down NAVAID must be available for instrument approach (ILS, VOR, NDB).
- g. No provision is made for the meteorological conditions that may prevail at adequate airports, however, good airmanship demands that the forecasts for any adequate intermediate airfields be checked at the planning stage and monitored during flight if marginal.

“Suitable” airport is an adequate airport with weather reports or forecast or any combination thereof indicating that the weather conditions are at or above operating minima as specified in the operations specification and the field condition report indicates that a safe landing can be accomplished at the time of the intended operations e.g. an adequate airport which satisfies ETOPS/EDTO weather minima requirements in terms of ceiling and visibility within a validity period (1 hour before earliest ETA and 1 hour after latest ETA) becomes a suitable airport.
ENGINE START MALFUNCTIONS

1) Start Valve Failure during Second Engine Start:

- Engine 2 started successfully.
- Engine 1 start attempt during pushback.
- Start valve does not open.
- Carry out ECAM actions.
- Inform ground and ATC (since you will be holding position for some time to carry out a procedure).
- Check if MEL is applicable.
- Do the procedure once pushback is completed and aircraft is stationary.
- Carry out FCOM > Normal Procedures > Supplementary Procedures > ENG > Engine Start Valve Manual Operation *
- The procedure has the following warning in it:

 WARNING To ensure safety of the ground crew when starting an engine with manual operation of the start valve, the flight crew should start the affected engine first.

- Since No 1 engine is the affected engine, it has to be started first, so shut down engine no 2 first.
- Then start engine no 1 as directed by the procedure.
- After starting engine 1, start engine 2 again.

* For Supplementary Procedures, if the procedure is related to engine start, it is recommended to read the entire procedure first, and then: The PM reads the actions, and The PF acts on the controls. For all other supplementary procedures, the procedures should be applied in accordance with the READ & DO principle, i.e. the PM reads the procedure and the PF or the PM acts on the controls, depending on the context.

2) Hot Start

- In auto mode FADEC handles it.
- You can see EGT going up and down and fuel flow going to zero during auto restart attempts.
- No action is required until the ECAM advises to switch off the affected engine’s master switch.

3) Hung Start

- N1, N2 is hung below idle parameters.
- Start fault appears on ECAM after 2 minutes, so be patient.
- After ECAM actions, carry out a manual engine start.
REJECTED TAKEOFF

Before 100 knots (Less serious. Abort is at Captain’s discretion depending on the circumstances)

Any ECAM Warning / Caution.

Between 100 knots & V1 (More Serious. Be go minded except for a few situations, as mentioned below)

<table>
<thead>
<tr>
<th>Failures with ECAM</th>
<th>Left Hand Items</th>
<th>Right Hand Items</th>
<th>Engine Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Side Stick Fault</td>
<td>Thrust Lever Fault</td>
<td>Fire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reverser Unlocked or Fault.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failures without ECAM</th>
<th>Sudden loss of thrust.</th>
<th>Any major failure.</th>
<th>If aeroplane is unsafe to fly due any reason.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire failure within 20 knots of V1: Unless debris from the tire causes noticeable engine parameter fluctuation, it is better to takeoff, reduce fuel load and land with full runway length available.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weather

Windshear.

Note: Exceeding EGT red line or nose gear vibration should not result in an abort above 100 knots *

* FCTM > Abnormal and Emergency Procedures > MISC > Rejected Takeoff.

Note: Below 80 knots, EGT over limit will trigger an ECAM & takeoff can be aborted but above 80 it is inhibited. EGT can exceed red line above 80 knots but do not reject takeoff above 100 knots. ECAM procedure should be applied after lift-off when appropriate flight path is established and aircraft is at least 400 ft AGL. Read more on why you can continue even if EGT exceeds the red line.

PROCEDURE DURING A REJECTED TAKEOFF

<table>
<thead>
<tr>
<th>CAPT</th>
<th>F/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>"STOP" .. ANOUNCE</td>
<td>REVERSERS...................................... CHECK/ANNOUNCE</td>
</tr>
<tr>
<td>Simultaneously:</td>
<td>DECELERATION................................. CHECK/ANNOUNCE</td>
</tr>
<tr>
<td>THRUST LEVERS.. IDLE</td>
<td>ANY AUDIO.. CANCEL</td>
</tr>
<tr>
<td>REVERSE THRUST.................................. MAX AVAIL.</td>
<td></td>
</tr>
</tbody>
</table>

Aircraft stopped

Consider positioning the aircraft to keep any possible fire away from the fuselage.

REVERSERS... STOWED

ATC... NOTIFY

PARKING BRAKE... ON

EMER EVAC Procedure (QRH)................................. LOCATE

CABIN CREW.. ALERT

ECAM ACTIONS... ORDER

The aircraft should remain stationary while the crew evaluates the situation.

Note:

- **Standard call for alerting the Cabin Crew is “CABIN CREW AT STATION”.

- **While locating the EMER EVAC procedure (QRH) make sure the dome light is ON.**
EMERGENCY EVACUATION

1. Read and do by F/O.

2. Call by the captain “CABIN CREW AT STATION” (already done when parking brake was set).

3. F/O does not need any confirmation from the Captain.

4. If Evacuation Required (Captain’s Items):
 - Advise ATC.
 - Call – CABIN CREW and PASSENGERS EVACUATE, EVACUATE, EVACUATE.
 - Activate the EVAC command.
 - On battery power, seats can only be operated mechanically. Leave the cockpit to assist evacuation.

5. If Evacuation Not Required (Captain’s Items):
 - Call – CABIN CREW and PASSENGERS REMAIN SEATED.
 - Advise ATC.
ENGINE FAILURE AFTER V1

<table>
<thead>
<tr>
<th></th>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 – 400 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>Rotate to 12.5° pitch ¹</td>
<td>Call – ROTATE</td>
</tr>
<tr>
<td>Positive Climb</td>
<td>Call – GEARS UP</td>
<td>Call – POSITIVE CLimb</td>
</tr>
<tr>
<td></td>
<td>β Target – Zero</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rudder – Trim ²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto Pilot – ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thrust – Consider TOGA ³</td>
<td></td>
</tr>
<tr>
<td>400 FT – ENG OUT ACC ALT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 Feet</td>
<td>Call – ECAM ACTIONS</td>
<td>Read – ECAM Title</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do – ECAM Actions</td>
</tr>
<tr>
<td>Engine Secured</td>
<td>Call:</td>
<td>Call – ENGINE SECURED ⁴</td>
</tr>
<tr>
<td></td>
<td>PM – STOP ECAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATC – PANPAN / MAYDAY</td>
<td></td>
</tr>
<tr>
<td>ENG Out ACC ALT</td>
<td>Push to Level OFF</td>
<td></td>
</tr>
<tr>
<td>ENG OUT ACC ALT – GREEN DOT SPEED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Speed</td>
<td>Call – CONF 1</td>
<td>Call – F SPEED</td>
</tr>
<tr>
<td>S Speed</td>
<td>Call – FLAPS 0</td>
<td>Call – S SPEED</td>
</tr>
<tr>
<td>Green Dot Speed</td>
<td>Select:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OP CLIMB ⁵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MCT ⁶</td>
<td></td>
</tr>
<tr>
<td>AFTER GREEN DOT SPEED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Continue ECAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At STATUS, stop ECAM and do the AFTER T/O CHECKLIST ⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Then continue with STATUS and complete the ECAM Actions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assess the situation, decide and inform accordingly (e.g. FORDEC etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In case of land back check the latest weather and type of approaches.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prepare accordingly.</td>
<td></td>
</tr>
</tbody>
</table>

1. When safely airborne, follow SRS orders.
2. Reset rudder trim in later phase of approach, before thrust reduction. With zero trim, anticipate increased rudder force. With zero trim, neutral rudder pedal position corresponds to zero rudder & zero nose wheel deflection.
3. For a derated takeoff, do not apply asymmetric TOGA thrust if the speed is below F, due to VMCA considerations.
4. Delay acceleration for securing engine. Engine is considered secured when ECAM actions are performed until: “ENG MASTER OFF” for an engine failure without damage, “AGENT 1 DISCH” for an engine failure with damage, Fire extinguished or “AGENT 2 DISH” for an engine fire. However, do not exceed the engine out maximum acceleration altitude (which corresponds to maximum altitude that can be achieved with one engine out and the other engine operating at takeoff thrust for a maximum of 10 mins).
5. When speed trend arrow reaches Green Dot. Climb at green dot speed and request for altitude change if required.
6. If already in FLX/MCT gate, move to CL and then back to MCT.
7. After checklist, consider engine relight or review one engine inoperative straight in or circling approach procedure in QRH (Abnormal & Emergency Procedures – ENG) if applicable. Then continue with the STATUS review.
Engine Flameout without Damage: It can be detected by observing rapid decrease of N1, N2, EGT and FF.

Engine Flameout with Damage: Suspect engine damage if two or more of the following symptoms are observed:

- Aircraft vibrations and/or buffeting.
- Repeated, or not controllable engine stalls.
- Rapid increase of the EGT above the red line.
- Absence of rotation or mismatch of rotor speeds.
- Hydraulic system loss.

Immediate Visual Circuit to Land Following an Engine Failure on Takeoff
ENGINE FAILURE DURING CRUISE

Initial Actions

As soon as the engine failure is recognized, the PF simultaneously:

- Sets all thrust levers to MCT
- Disconnects A/THR
- Sets a HDG as appropriate and pulls (towards an alternate or to keep clear of an airway etc.)
- Determines the engine out recovery altitude.
- When ready for descent:
 - ALTITUDE – SET & PULL (OPEN DES to Engine Out Recovery Altitude).

- ECAM/OEB actions.

1. THR is disconnected to avoid any engine thrust reduction when selecting speed according to strategy or when pulling for OPEN DES to initiate the descent. With A/THR disconnected, the target speed is controlled by the elevator when in OPEN DES.

2. Standard, Obstacle or Fixed Speed Strategy.
Standard Strategy

This is generally used unless a special procedure before dispatch has been established (e.g. ETOPS / Mountains etc.):

- **Speed** – 0.78 / 300 (stabilized windmill engine relight in-flight envelope)
- **Descend** – To REC MAX EO cruise altitude
- **V/S** – Select V/S -500 if ROD < 500
- **A/THR** – ON
- **Level Off Altitude** – LRC with 1 Engine Out

1. This equates to LRC with anti-icing OFF and should be set on FCU. Displayed on PROG page or available in QRH.
2. Likely to occur while approaching level off altitude.
3. QRH or FCOM PER OEI-GEN Procedure.

Note: Pressing the EO CLR key on the MCDU restores the all engine operative predictions and performance. Reverting to one engine-out performance again is not possible.

Obstacle Strategy

- **Speed** – Green Dot
- **Descend** – To Drift Down Ceiling
- **At Drift Down Ceiling** – Check Obstacles
 - Not Clear of Obstacles
 - Maintain Drift Down Procedure
 - Clear of Obstacles (revert to standard strategy)
 - Ceiling – Set LRC Ceiling on FCU
 - Speed – LRC Speed
 - A/THR – Engage

1. Displayed on PERF CRUISE page in EO conditions and also in QRH & FCOM. This should be set on FCU.
2. In order to fly an ascending cruise profile.
The Fixed Speed Strategy
This relates to ETOPS (FCOM PRO-SPO - Extended Range Operations)

ONE ENGINE INOPERATIVE GO-AROUND
It is similar to a go-around flown with all engines. Some additional items to consider are:

- **Thrust** – On application of TOGA apply rudder promptly to keep beta target centered.
- **Pitch** – 12.5° if SRS is not available. SRS engages if flap lever is Flap 1 or greater, in that case follow SRS.
- **Lateral FD Mode** – GA TRK (or NAV) must be considered with respect to terrain clearance.
- **At Engine-Out Acceleration Altitude** – Same procedures which are applicable to engine failure after V1.
PRACTICING STALL RECOVERY IN SIM

FAC 1 and 2 OFF will establish the alternate law. Stabilize at 10,000 feet in a clean configuration.

<table>
<thead>
<tr>
<th>Thrust Idle</th>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust Idle</td>
<td>Maintain Level</td>
<td></td>
</tr>
</tbody>
</table>

Stall Warning

Call – STALL, I HAVE CONTROL
Pitch – Slightly below Horizon
Wings – Level

Out of Stall No Stall Warning

Thrust – Increase Smoothly
Speed Brakes – Check Retracted
Pitch – Maintain angle, avoid pitching up

VLS +10

Flight Path – Recover by increasing pitch¹
Call – Flaps 1²
Select – Flaps 1

S Speed

Call – S SPEED³
Select – FLAPS 0

Approaching Level

Thrust and Speed – Adjust
Level – Maintain

1. Increase pitch smoothly to about 5-7°. Pitching up rapidly will give another stall warning which is to be avoided.

2. Call for flaps 1 if below 20,000 feet.

3. Any delay in retracting the flaps will give a VFE warning and pitching up quickly to avoid a VFE warning will generate a second STALL warning. So, in order to avoid both warnings be quick to respond and retract flaps when the speed trend arrow is touching the S speed and speed is close to it i.e. don’t wait for S speed to be crossed.

PRACTICING STEEP TURNS IN SIM

Altitude: Approx. 9000 feet. Weight: Approx. 60 tons. Target Bank Angle: 45°.

- Before Turning:
 - Speed: 250 knots.
 - N1: In some old machines about 68%, otherwise about 64%.

- After Initiating the Turn:
 - Pitch: Between 2.5 & 5° (if not using the bird).
 - N1: In some old machines increase by about 3-4% otherwise by 1-2%.
PREDICTIVE WINDSHEAR AT TAKEOFF

- Evaluate takeoff conditions by weather observation and experience.
- Delay takeoff.
- If taking off then select the most favorable runway considering wind shear location.
- Use weather radar / predictive windshear before takeoff to ensure flight path is clear.
- If suspecting Windshear – Set TOGA.
- If there is an aural alert “Windshear Ahead” before 100 knots – Abort.
- “Windshear Ahead” & “Monitor Radar” alert is inhibited when speed > 100 knots and height < 50 feet.
- Above 50 feet if there is a “Windshear Ahead” or “Monitor Radar Display” aural alert – Set TOGA.
- Configuration may be changed if windshear is not entered.
- If windshear is entered, follow reactive windshear procedure.

REACTIVE WINDSHEAR AT TAKEOFF

<table>
<thead>
<tr>
<th></th>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Windshear</td>
<td>Call – WINDSHEAR TOGA</td>
<td>Monitor and Call: ²</td>
</tr>
<tr>
<td></td>
<td>Thrust – TOGA</td>
<td>• RA Height</td>
</tr>
<tr>
<td></td>
<td>Pitch – SRS ¹</td>
<td>• Flight Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Speed Trend</td>
</tr>
<tr>
<td>Out of Windshear</td>
<td>Thrust – Climb ³</td>
<td>Configuration – Clean up</td>
</tr>
<tr>
<td>Approx. 1300+ ft</td>
<td>Autopilot – ON</td>
<td>Report to ATC: ⁶</td>
</tr>
<tr>
<td>when Red WS</td>
<td>Open Climb – Select ⁴</td>
<td>• A/C Type</td>
</tr>
<tr>
<td>Message on PFD</td>
<td>Call for Clean Up ⁵</td>
<td>• Windshear Height</td>
</tr>
<tr>
<td>Disappears</td>
<td></td>
<td>• Speed Loss</td>
</tr>
</tbody>
</table>

1. If a/c keeps on sinking, pull up to full aft sidestick. Once a/c starts climbing then again follow SRS. If speed trend increases rapidly towards VFE then disregard FDs and increase pitch to about 25° to bring the speed down.

2. e.g. 500 feet descending, 600 feet climbing – speed decreasing, 700 feet climbing etc.

3. If in TOGA LOCK, disconnect A/THR, Set CLB Thrust and the re-engage A/THR.

4. If FCU altitude is greater than actual altitude.

5. Retract flaps to protect VFE limit.

6. For example “Airbus A320, encountered windshear at 200 feet, lost about 30 knots of speed”.

PREDICTIVE WINDSHEAR AT APPROACH AND LANDING

- Delay approach or Divert.
- If approach is continued then evaluate landing conditions by weather observation and experience.
- Select the most favorable runway considering appropriate approach aid.
- CONF 3 landing should be considered.
- Managed speed recommended (to take advantage of GS Mini function).
- VAPP may be increased by max VLS +15.
- In case of strong or gusty crosswind > 20 kt. Refer to QRH/PER-A VAPP Determination without Failure.
TCAS EVENT

<table>
<thead>
<tr>
<th>TCAS EVENT</th>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Advisory</td>
<td>Call – TCAS, I HAVE CONTROLS</td>
<td>ATC – Inform</td>
</tr>
<tr>
<td>Resolution Advisory</td>
<td>AP – OFF</td>
<td>FDs – Set Both OFF</td>
</tr>
<tr>
<td></td>
<td>Call – FDs OFF</td>
<td>ATC Call – TCAS RA</td>
</tr>
<tr>
<td></td>
<td>Pitch – To Keep VSI in Green Band</td>
<td></td>
</tr>
<tr>
<td>Clear of Conflict</td>
<td>Pitch – 2.5° to Level OFF</td>
<td>FDs – Set Both ON</td>
</tr>
<tr>
<td></td>
<td>Call – FDs ON</td>
<td>ATC – Inform</td>
</tr>
<tr>
<td></td>
<td>AP – ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALT – OP CLB / DES ¹</td>
<td></td>
</tr>
</tbody>
</table>

1. Resume last ATC clearance.

UPSET RECOVERY

NOSE HIGH
- AP & A/THR OFF if unable to prevent flight path divergence.
- Apply nose down pitch – incremental use of pitch trim if required – excessive use is prohibited.
- Use maximum thrust if low speed is a concern. Increasing thrust may limit nose down pitch control.
- If normal pitch control is ineffective then bank or maintain bank (less than 60°) to drop the nose.
- Avoid stall due to premature recovery in low speed conditions.
- Avoid excessive g-loading in high speed conditions.

NOSE LOW
- AP & A/THR OFF if unable to prevent flight path divergence.
- Recover from stall first if that is the case (might have to push down the nose a little initially).
- Roll to wings level and then pitch up (be gradual else the stall warning might come up).
- Control speed by reducing thrust and/or speed brakes if required.
- Avoid stall due to premature recovery in low speed conditions.
- Avoid excessive g-loading in high speed conditions.

GPWS EVENT

PF calls PULL UP TOGA and carries out the memory items. PM monitors RA, a/c trajectory and informs ATC.
EMERGENCY DESCENT

Rely on CAB PR EXCESS CAB ALT ECAM warning, even if not confirmed on CAB PRESS SD page since the warning is triggered by a cabin pressure sensor, different from the one used to control pressure & display cabin altitude on SD.

<table>
<thead>
<tr>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call – EMERGENCY DESCENT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PF ACTIONS</th>
<th>PM ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF ACTIONS</td>
<td>PM ACTIONS</td>
</tr>
</tbody>
</table>

Adjust:
- Level – FL100 / MEA
- Heading
- Speed – Max / Appropriate

Lights and Signs – ON
- PA Call – EMERGENCY DESCENT REMAIN SEATED
- ATC Call – MAYDAY EMERGENCY DESCENT
- Squawk – Set 7700 (if req)
- ENG MODE SEL – IGN
- IF CAB ALT > 14 000 FT – PAX OXY MASKS MAN ON

<table>
<thead>
<tr>
<th>Call for ECAM Actions</th>
<th>Do ECAM Actions till Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call for EMER Descent Checklist</td>
<td>Do EMER Descent checklist from QRH 4</td>
</tr>
</tbody>
</table>

1. Set SPEED/MACH pb to SPEED, to prevent increase in IAS or to reduce speed. This minimizes stress on aircraft structure.

2. Allow speed to increase before using speed brakes. At high flight levels, extend speed brakes while monitoring VLS to avoid activation of angle of attack protection which may result in retraction of speed brakes and AP disconnection.

3. MORA on ND is the highest MORA value within a radius of 40 NM around the aircraft.

4. QRH > Abnormal and Emergency Procedures > MISC > EMER Descent.
EMERGENCY DESCENT – CONTINUED

Differences between EXCESS CABIN ALT on ECAM and EMER DESCENT checklist in QRH

<table>
<thead>
<tr>
<th>PF</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>At ALT° – Retract Speed Brakes</td>
<td>From ATC – Request Regional QNH / MSA</td>
</tr>
<tr>
<td>At Level OFF:</td>
<td>At Level OFF:</td>
</tr>
<tr>
<td>• Check and Set Target Speed</td>
<td>• Remove Oxygen Mask</td>
</tr>
<tr>
<td>• Order PM to remove Oxygen</td>
<td>• Inform PF how you are feeling.</td>
</tr>
<tr>
<td>• Ask PM How he/she is feeling</td>
<td></td>
</tr>
<tr>
<td>Remove Oxygen</td>
<td></td>
</tr>
<tr>
<td>Close the Oxygen Mask Stowage Compartment Doors</td>
<td></td>
</tr>
<tr>
<td>Press the PRESS TO RESET Oxygen control slide, to deactivate mask microphone, and to cut off oxygen</td>
<td></td>
</tr>
<tr>
<td>Call – Purser to Cockpit</td>
<td></td>
</tr>
<tr>
<td>Check Cabin status</td>
<td></td>
</tr>
<tr>
<td>Assess the situation, Decide and Inform accordingly (e.g. FORDEC etc.)</td>
<td></td>
</tr>
</tbody>
</table>

ABNORMAL SLATS / FLAPS

- For any slats / flaps problem – Speed Pull.
- If this happens during approach – Delay the approach (enter hold etc.) to complete the ECAM procedure.
- Do the LANDING WITH FLAPS OR SLATS JAMMED QRH procedure.
- Set speed before moving flap lever. Target speed will be VFE Next -5.
- When speed is VFE Next, select flaps lever one step down.
- ECAM will determine the speed Increment to VREF.
- Add the speed increment to VLS of FULL Flaps (on APPR PERF page) and then enter it as VAPP.
Note: Make sure CONF FULL is selected while adding the increment to VLS and setting it as VAPP because VLS for CONF 3 is higher than FULL Flaps CONF.

- Select CONF 3 on APPR PERF page since landing in this case will be with Flaps 3.

- After Flaps 3, select VAPP and land.

DUAL HYDRAULIC (G+B) FAILURE

- **AVIGATE**: Speed selected at actual speed.
- **NAVIGATE**: Land ASAP.
- **COMMUNICATE**: May Day.
- Call for ECAM actions.
- After STATUS – Go to Dual Hydraulic QRH summary.
- The cruise part of the summary has reference for the Inflight Performance.
- For approach review ECAM status again and then QRH summary for approach, landing and go-around.
- Add the speed increment to FULL Flaps VLS on APPR PERF page and then enter it as VAPP.
- Select CONF 3 on APPR PERF page since landing in this case will be with Flaps 3.
- Ask for a longer final (15 miles would do) for slow configuration changes.
- Start configuring on the final track.
- Extend the landing gear at 200 knots to revert sooner in direct law. This provides, below 200 knots, a better pitch control than in alternate law with one elevator lost and all slats lost.
- Set speed before moving the flap lever. Target speed will be VFE Next -5 knots.
- When flaps 3 is selected – Select VAPP.
- A/THR OFF – As it may not satisfactorily maintain speed.
DUAL HYDRAULIC (G+Y) FAILURE

- Same concept and philosophy, however, in this case take gears at the end because the stabilizer is lost. In alternate law, the auto trim function is provided through the elevators. Landing gear extension activates the direct law, so auto trim function is lost. However, the mean elevator position at that time is memorized, and becomes the reference for centered sidestick position. This is why, in order to ensure proper centered sidestick position for approach and landing, the procedure requires to wait for stabilization at VAPP, before landing gear extension. If this procedure is missed, the flare and pitch control in case of go-around may be difficult. The PFD message USE MAN PITCH TRIM after landing gear extension should thus be disregarded.

- A/THR is not set to OFF in this case.

<table>
<thead>
<tr>
<th>Remaining systems</th>
<th>Cruise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight phase</td>
<td>Systems</td>
</tr>
<tr>
<td>Cruise</td>
<td>Auto pilot</td>
</tr>
<tr>
<td></td>
<td>Yaw damper</td>
</tr>
<tr>
<td></td>
<td>Control law</td>
</tr>
<tr>
<td></td>
<td>Stabilizer</td>
</tr>
<tr>
<td></td>
<td>Spoilers</td>
</tr>
<tr>
<td></td>
<td>Elevator</td>
</tr>
<tr>
<td></td>
<td>Aileron</td>
</tr>
</tbody>
</table>

ENG 1+2 BLEED FAULT – OVERVIEW OF THE LENGTHY QRH PROCEDURE

SCENARIO 1: On either side the problem is either BLEED FAULT or BLEED ABNORMAL PRESSURE

- Reset on either side is allowed in this case.
- If reset is unsuccessful, descend to FL100/MEA-MORA.
- While passing through FL200 if APU bleed is available then no need to descend to FL100.
- ENG bleeds can be reset once again at FL200.
- If APU bleed not available then continue to FL100/MEA-MORA.
- At FL100/MEA-MORA, ENG bleeds can be reset once again. If unsuccessful then set RAM Air ON.

SCENARIO 2: On one side the bleed is not available due to engine fire, leak or start valve open while on the other side the problem is either BLEED FAULT or BLEED ABNORMAL PRESSURE.

- In this case reset is only allowed on the side with BLEED FAULT or BLEED ABNORMAL PRESSURE.
- If fire, leak etc. is on #1 side then continue to FL100/MEA-MORA because APU bleed cannot be used, since it supplies the left side which has to be isolated. At FL100/MEA-MORA if engine bleed 2 cannot be reset then set RAM Air ON.
- If fire, leak etc. is on #2 side then at FL200 APU bleed (if available) can be used to supply #1 side and there is no need to descend to FL100/MEA-MORA. ENG 1 bleed can be reset again.
- If APU bleed not available, continue to FL100/MEA-MORA and reset ENG 1 bleed again.
- If engine bleed 1 still cannot be reset then set RAM Air ON.

SCENARIO 3: No side indicates BLEED FAULT or BLEED ABNORMAL PRESSURE.

- In this case bleed reset is not possible on either side.
- Descend to FL100/MEA-MORA and set RAM Air ON.
DUAL ENGINE FAILURE

- In case of partial loss of thrust (no engine flameout) on one or more engines, the residual N2 may remain slightly above the ENG FAIL alert threshold and ENG DUAL / ALL ENGINES FAILURE alert on ECAM is not triggered.
- If there is Time to Relight – Apply ENG DUAL FAILURE or ALL ENG FAIL QRH PROC as applicable.
- If No Time to Relight then – Apply EMER LANDING QRH PROC.
- Carry out ECAM actions first.
- ECAM for ENG DUAL FAILURE (AP-BLV, BLA, BLT) will lead to one of the following QRH procedures:
 - Dual Engine Failure with Fuel Remaining.
 - Dual Engine Failure without Fuel Remaining.
- ECAM for ENG ALL ENGINES FAILURE will lead to ALL ENG FAIL QRH procedure.
 - The procedure includes the engine relight options i.e. subject to fuel, if relight can or cannot be attempted.
HANDLING SMOKE AND FUMES

- If No ECAM – QRH Smoke Procedure Apply.
- If ECAM:
 - For Avionic Smoke Warning – Apply ECAM if smoke is perceptible.
 - For Other Smoke Warning (e.g. lavatory) – Must apply ECAM. If doubtful go to QRH smoke procedure.

SMOKE/FUMES/AVNCS SMOKE Procedure Presentation in QRH

![QRH SMOKE Procedure Presentation](image-url)
IMMEDIATE ACTIONS

- Flight crew protection.
- Avoiding any further contamination of the cockpit/cabin.
- Communication with cabin crew.

SMOKE ORIGIN IDENTIFICATION AND FIGHTING

- Smoke from cockpit's ventilation outlets, or if detected in cabin, suspect an AIR COND SMOKE. In addition, very shortly thereafter, several SMOKE warnings (cargo, lavatory, avionics) will be triggered. The displayed ECAM procedures must therefore be applied.
- Following an ENG or APU failure, smoke may emanate from the faulty item through the bleed system and be perceptible. It will be re-circulated throughout the aircraft, until it disappears from the air conditioning system.
- If smoke detected, while an equipment is faulty, suspect that smoke is coming from this equipment.
- Do the avionics smoke procedure if:
 - Source of the smoke remains unknown.
 - Application of Airconditioning/Cabin equipment smoke is unsuccessful

MISC REFERENCES

<table>
<thead>
<tr>
<th>PROCEDURES</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditching, Emergency Decent, Forced Landing, Bomb on Board, Windshield / Window Arcing or Cracked, Overweight Landing, Severe Turbulence, Tailstrike, Volcanic Ash.</td>
<td>QRH > Abnormal and Emergency Procedures > MISC</td>
</tr>
<tr>
<td>Above Items + Stall, Emergency Evacuation, Emergency Landing All Engine Failure.</td>
<td>FCOM > Abnormal and Emergency Procedures > MISC</td>
</tr>
<tr>
<td>Smoke / Fire from Lithium Batteries</td>
<td>QRH > Abnormal and Emergency Procedures > SMOKE</td>
</tr>
</tbody>
</table>

Disclaimer: “A320 Abnormal Procedures” are personal notes of the undersigned for training only. These notes do not sanction any pilot to violate his/her Company’s Standard Operating Procedures, Aircraft Manuals or Manufacturer's Recommendations.