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1Introduction

Introduction

The very competitive and deregulated nature of the 

aviation market together with concerns over fuel price 

rises, means that more than ever before, airlines focus 

on how they can keep their fuel consumption down. 

Indeed, they seek out operational cost reductions on 

every single business facet. Fuel conservation has 

become a major preoccupation for all airlines and aircraft manufacturers. That is why one should consider using 

whichever ways and means there are to reduce fuel consumption, barring affecting safety; that, of course, must 

remain the number one priority, at any time and for any airline.

Already, ATR aircraft are recognised as the most fuel-efficient aircraft in their category, thanks to high-tech 

engines and propeller efficiency. Compared with an equivalent jet aircraft on a 300Nm average trip, the ATR 

72-500 boasts a 35% block fuel saving per passenger.

This document depicts the many factors which affect fuel consumption and the latent gains or losses to be made. 

Its purpose is to examine the influence of flight operations on fuel conservation with a view to making 

recommendations that will enhance the potential for fuel economy.

Most of these factors are directly controlled by the airline’s own employees (flight crews, operations/despatch 

and maintenance staff) during flight preparation and in-flight. Fuel and cost efficient airlines will consider the 

following main features to be paramount:

 Thorough flight planning from very accurate data;

 Correct aircraft loading (fuel weight and Center of Gravity);

 An aerodynamically clean aircraft;

 Flight procedures that set speeds and altitudes in relevance with the company’s economic priorities;

 During flight planning, the use of performance factors derived from an ongoing aircraft performance 

monitoring programme.

 

None of the information herein is intended to replace procedures or recommendations contained in the Flight 

Crew Operating Manuals (FCOM) or any other approved ATR manual, but rather to highlight areas where 

maintenance, operations and flight crews can significantly contribute to fuel savings.

Introduction
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1. Flight Planning

The fundamental requirement for achieving optimised fuel economy and reduction of operating costs is 

a quality Flight Planning System. 

A good flight planning system will produce an optimized route, in terms of track, speeds and altitudes, which 

meets the operator’s economic criteria. This track and vertical profile should be achieved during normal opera-

tions, given the constraints of ATC, climb rates, descent rates, etc. It will be based on good quality data (tem-

perature, wind, aircraft weight, payload, etc).

The ATR Flight Operations Software (FOS) includes a Flight Plan computation module which meets the custom-

ers’ needs for accurate fuel calculations. 

1.1. Cost index

A technique that reduces fuel burn often requires more trip time. The choice of fuel saving is hence offset 

by its impact on time related cost (hourly maintenance costs, flight and cabin crew costs and marginal 

depreciation or leasing costs). The cost index is the cost of time ($/min) compared with the cost of fuel ($/

kg) and is used to obtain the best economics. 

The determination of the cost index, is specific to each airline, depending on its economic policy. If fuel costs were 

the overriding priority, i.e. fuel costs are much more significant than the cost of time, then the cost index would be 

low. The aircraft would then be chosen to fly at minimum fuel/ cruise at long-range speed. 

However if the cost of fuel was very cheap compared to the cost of time, then speed would be important and the 

cost index would be high. The aircraft would then be chosen to fly at minimum time / cruise at maximum speed. 

Best economics would be between these two speeds and would depend on the operator’s cost structure and oper-

ating priorities. For ATR aircraft, the speed range between maximum and long-range speed is restricted. For instance, 

for an ATR 72-500 cruising at FL200; max cruise speed is 204 kt and long-range speed is 176 kt. Operators generally 

chose to cruise at max speed, long-range speed, or at given intermediate IAS. 

The fuel saving between a minimum time and a minimum fuel policy is valuable and leads to important fuel con-

sumption reduction. Let us consider the example of an average 300Nm trip performed with an ATR 72-500, for 

which the fuel consumption difference between a cruise at maximum speed and a cruise at long range speed was 

calculated with the FOS software, selecting an optimized cruise altitude. The fuel consumption reduction between 

those two policies is up to 8%.

These standard cases, minimum fuel at FL 230 and minimum time at FL 180 serve as the reference for all examples 

given in the following paragraphs.

Flight 

conditions

Airline 

Policy

Trip 

fuel 

(kg)

Delta 

(kg)

Delta

(%)

Trip

time

Delta 

(min)
FL

Mean IAS

(kts)

Specific 

consump-

tion (kg/

Nm)

TOW 

(tons)

Standard (*)

Mini time 899 1h15 180 210 2.6 21

Mini fuel 826 –73 –8.1 1h20 +5 230 175 2.2 21

Table A1: Fuel saving for a 300Nm trip with ATR72-500 depending on the airline policy (reference cases for 

the fuel consumption).

(*) The standard flight conditions correspond to Climb 170kts / Descent 240 kts with 3° gradient, CG 25% and no wind at cruise level.
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To understand the trip fuel difference that can be attributed to the cruise flight level or to the cruise speed changes 

between the two reference cases, the following Figure shows the fuel consumption versus cruise speed at different 

flight level.
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Figure A1: Fuel consumption for a 300Nm trip with ATR 72-500 versus cruise FL and speed

In addition to the fuel saving benefit, cruising at long-range speed reduces the temperature of the engine (ITT) and 

improves consequently the lifetime of the components of the engine. This thus leads to engine maintenance costs 

saving. Cruising at high flight levels has however an impact on the airframe structural fatigue. The airframe is more 

pressurized at higher level, and its structure is stressed by the higher difference in pressure between the cabin and the 

outside air. This may lead to more frequent maintenance inspections on the airframe, and may limit the total number 

of aircraft cycles.

1.2. Wind forecasting

Winds have a significant influence on fuel consumption and it is valuable to consider this meteorological effect in 

a fuel saving policy. The wind speed can vary with altitudes. For a given weight, when cruise altitude is lower than 

optimum altitude, the specific range (distance covered versus fuel burnt) decreases. Nevertheless, it is possible 

that, at a lower altitude with a favourable wind, the ground specific range improves. When the favourable wind 

difference between the optimum altitude and a lower one reaches a certain value, the ground-specific range at 

lower altitude is higher than the ground-specific range at optimum altitude. As a result, in such conditions, it is 

more economical to cruise at the lower altitude. 

For instance, let us assume that the headwind at FL180 is 20 kts and 50kts at FL230, the wind gradient is thus 

+6kts/1000ft. In this case, in long-range speed, the specific range, is 0.39Nm/kg at FL 180 and 0.37 Nm/kg at 

FL230, it is thus more valuable to fly at lower altitude. At long-range speed, the transition wind gradient from 

which it is fuel economical to cruise at a lower flight level is about +4kts / 1000ft 

However in max cruise speed, the specific range is 0.35Nm/kg for both FL 180 and FL230. It is thus equivalent 

to fly at any of those FL. The transition wind gradient is higher in case of max cruise speed, around +6kts/1000ft 

in average. 
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Figure A2: Wind altitude trade for optimised specific range at long-range speed
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Figure A3: Wind altitude trade for optimised specific range at max cruise speed

The wind effect really depends on the day’s weather conditions and the flight crew can optimize the specific range by 

monitoring their specific fuel consumption. 

SFC =
FuelFlow

GS

1.3. Centre of gravity position

The gross weight is the sum of the dry operating weight, payload and fuel and acts as one force through the 

centre of gravity (CG) of the aircraft. The load and trim chart allows the determination of the overall centre of 

gravity of the airplane taking into account the centre of gravity of the empty aircraft, the fuel and the payload 

distribution. It must be ensured that the centre of gravity is within the allowable range referred to as the centre of gravity 

operational envelope.  

A more forward centre of gravity requires a nose up pitching moment obtained through reduced tail plane lift, which 

is compensated for by more wing lift. This creates more induced drag and leads to an increase in fuel consumption. 

It is better to have the centre of gravity as far aft as possible. As a rearward shift in CG position reduces the dynamic 

stability of the aircraft, the CG envelope defines the aft limit. 

The position of the centre of gravity has a limited impact on the ATRs fuel saving. Nevertheless, choosing an aft rather 

than a forward balance leads to a slight gain in fuel consumption.

Let us consider the example of the reference 300Nm trip performed with an ATR 72-500. 

The fuel consumption reduction with an aft balance of 34% is at the utmost 0.6% when comparing to the same flight 

in 25% CG conditions. 

The aft balance conditions of flight are: standard procedures, CG 34% and no wind at cruise level.

Flight 

conditions
Airline Policy Trip fuel (kg)

Delta

(kg)

Delta

(%)

Trip

time

Delta

(min)

Cruise

FL

Aft

balance

34%

Mini time 897 –2 –0.2 1h15 +0 180

Mini fuel 821 –5 –0.6 1h20 +0 230

Table A2: Fuel saving for a 300Nm trip with ATR72-500 with aft balance

In the opposite, a forward balance of 17% leads to an extra fuel burn of 0.6% when comparing to the same flight in 

25% CG conditions.
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Flight 

conditions
Airline Policy Trip fuel (kg)

Delta

(kg)

Delta

(%)

Trip

time

Delta

(min)

Cruise

FL

Forward

balance

17%

Mini time 901 +2 +0.2 1h15 +0 180

Mini fuel 831 +5 +0.6 1h20 +0 230

Table A3: Extra fuel consumption for a 300Nm trip with ATR72-500 with forward balance

Globally, from the most forward to the most aft CG position, the fuel economy is only 1.2% in case of mini fuel, and 

0.4% in case of mini time policy. 

1. 4. ETOPS (Extended range with Twin-engines aircraft 

Operations)

The ETOPS concept aims to settle and support the operations of twin-engine aircraft on long distances. 

It allows operating twins on routes containing points further than 60 minutes flying time from an adequate landing 

airport. When required to fly over water or deserted areas, ETOPS allows more direct routes and thus leads to 

fuel saving. 

The ATR 42-500 and 72 aircraft are certified with an ETOPS capability of 120 minutes. 

2. Fuel Reserves
Fuel is loaded onto the aircraft as follows:

 Taxi fuel Trip fuel Contingency fuel

 Alternate fuel Final reserve fuel Additional fuel

 Extra fuel Tankering fuel

In order to avoid unnecessary fuel weight, the flight must be planned very precisely to calculate the exact fuel 

quantity to be embarked. Flight preparation should be based on aircraft performance monitoring by taking into 

account performance factors derived from specific range variations. 

The fuel reserves will be based on a policy that aims at obtaining the minimum values required within the regula-

tions, a fuel saving can be especially achieved on the contingency fuel reserve. 

To minimize the alternate fuel, the alternate airports should be chosen as near as possible to the destination. 

Both the JAA and FAA do not require the alternate fuel reserve in certain cases, depending on meteorological 

conditions and the suitability of the airport, but be aware than in that case an additional fuel of 15min is required.  

Another part of the reserves is the extra fuel, which is at the Captain’s discretion. There are many reasons why 

this extra fuel is necessary. It could be due to uncertain weather conditions or availability of alternate and destina-

tion airfields, leading to a probability of re-routing. It may also be due to lack of confidence in the flight planning 

and the natural desire to increase reserves. This is the one area where a significant impact can be made through 

accurate flight preparation.
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2.1. Contingency fuel reduction

Within JAR OPS, there are several definitions of contingency fuel, depending on diversion airfields, fuel con-

sumption monitoring, etc. but briefly the fuel is the greater of two quantities:

 5 minutes hold fuel at 1500 feet above destination at ISA 

 One of the following quantities:

–  5% of trip fuel, 

–  3% of trip fuel with an available en-route alternate aerodrome, 

–  an amount of fuel which ensures an appropriate statistical coverage 

of the deviation from the planned to the actual trip fuel,

–  20 minutes trip fuel, based upon trip fuel consumption.

The last 3 options require Authority approval and the last 2 options require fuel consumption monitoring program. 

One further method of reducing the contingency fuel is by using a decision point or redispatch procedure. This involves 

the selection of a decision point where the aircraft can either continue to the destination, as the remaining fuel is suf-

ficient, or it can reach a suitable proximate diversion airport. 

a) En-route alternate airport
The contingency fuel can be reduced from 5% to 3% providing an en-route alternate is available. Appendix 2 to 

OPS 1.255 defines the en-route alternate as an aerodrome which shall be located within a circle having a radius 

equal to 20% of the total flight distance, the centre of which lies on the planned route at a distance from the des-

tination aerodrome of 25% of the total flight plan distance, or at least 20% of the total flight plan distance plus 

50 Nm, whichever is greater.

 

Figure A4: En-route alternate aerodrome location

The reduction of the contingency fuel from 5% to 3% has a limited impact on the ATR’s fuel saving. Indeed, this aircraft 

operates on short trip distance and furthermore its transport coefficient (refer to § B. 2. 2.Tankering fuel) is very low.

For the reference 300Nm trip, taking 3% contingency fuel instead of 5% allows to transport around 20kg less fuel. But 

this fuel is almost entirely recoverable at destination as the ATR transport coefficient is low. 

The longer the trip distance is, the more valuable is this contingency fuel reduction. 

b) Decision point procedure

This procedure permits aircraft to carry less contingency fuel than in the standard case.

Operators select a point called the decision point along the planned route (Figure 2). At this point, the pilot has two 

possibilities:

 Reach a suitable proximate diversion airport, taking into account the maximum landing weight limitation,

 Continue the flight to the destination airport, when the remaining fuel is sufficient.



Flight preparation

9A. Flight preparation
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Figure A5: Decision point procedure

Comparing the standard fuel planning and the decision point procedure fuel planning, the maximum contingency fuel 
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2.2. Tankering fuel

The normal message regarding fuel burn is that it is more economical to carry the minimum amount required 

for the sector. However there are occasions when it is economic to carry more fuel. This is when the price of fuel at 

the destination airfield is significantly higher than the price at the departure airfield. 

However, since the extra fuel on board leads to an increase in fuel consumption the breakeven point must be 

carefully determined.

K is the transport coefficient:  K =
Δ TOW

Δ LW

The addition of one ton to the landing weight, means an addition of K tons to the take-off weight. For instance, if K=1.1 

and 550 kg fuel is added at the departure, 500 kg of this fuel amount will remain at the destination. So carrying half a 

ton of fuel costs 50 kg fuel more.

Let us consider the example of the reference 300Nm trip performed with an ATR 72-500.

Flight 

conditions
Airline Policy TOW (tons) LW (tons) K

Standard

Mini time
20

16

19.21

15.28
1.018

Mini fuel
20

16

19.12

15.14
1.005

Table A4: Transport coefficient for a 300Nm trip with an ATR72-500

On ATR aircraft, the transport coefficient is actually very low, and even lower in case of a mini fuel policy. That means 

that almost all of the extra fuel carried will be recoverable at destination. 



10A. Flight preparation

Fue l  sav ing

Tankering fuel may be valuable when a fuel price differential exists between two airports.

 The extra-cost of the loaded fuel at departure is:

Extra fuel weight × departure fuel price: ΔTOW ∙ Pdeparture=K ∙ LW ∙ Pdeparture

 The cost saving of the transported fuel is:

Transported fuel × arrival fuel price:  LW ∙ Parrival

 The cost due to a possible increase in flight time is:

Flight time increase × cost per hour:  T ∙ Ch

It is thus profitable to carry extra fuel if the cost saving exceeds the extra fuel loaded cost plus the extra time cost.

That is to say: ΔLW ∙ P > K ∙ LW ∙ P+ T ∙ C

 ΔLW (P – K ∙ P) - T ∙ C > 0

Therefore, if ΔT = 0, it is profitable to carry extra fuel if the arrival fuel price to departure fuel price ratio is higher than 

the transport coefficient K.

 Parrival

 Pdeparture
 >K

3. Cruise performance monitoring

In order to avoid unnecessary fuel weight, the flight must be planned very precisely to calculate the exact fuel 

quantity to be embarked. Flight planning should be based on aircraft performance monitoring by taking into account 

performance factors derived from specific range variations. 

In case of excessive fuel flow, or drag increment detected through the monitoring of the performance, an investigation 

can be carried out to determine their causes. Then the appropriate maintenance corrective action (surface clean up, 

engine wash…) can be done to improve the aircraft performance. 

The Module 5 of the FOS, Cruise Performance Monitoring (CPM), is a valuable tool to assess the possible deviation in 

aircraft performance and to monitor the drag trend. It brings better insight to the airline analysts to identify engine per-

formance degradation or fuselage drag. The CPM module enables comparison of aircraft cruise performance, mainly 

torque, fuel flow and IAS, measured in flight with theoretical data computed by the FOS.

For aircraft fitted with the Multi Purpose Computer (MPC), the parameters are recorded automatically during the stabi-

lised cruise phase and stored in the PCMCIA card of the MPC. The downloading of the “Cruise report” files into FOS 

is then easily achieved by inserting the card in a laptop. A manual mode for data entry is available for other aircraft 

where the measurements are to be performed by the crew.
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The following paragraphs describe some applicable procedures that lead to fuel economy. Though, be care-

ful that before applying those procedures, the changes induced to the flight management have to be studied 

and the SOP updated accordingly.

1. Hotel mode

When the aircraft stands at the ramp, in hotel mode, the fuel consumption is 110kg/hour for the PW127 engine. 

When the airport facilities allow it, the use of the GPU to deliver the required power supply on ground is fuel 

economical.  

2. Taxiing

Good estimate of taxi times are required. Actual times need to be monitored and standard estimates changed as 

necessary. Engine performance is optimised for flight conditions, but all aircraft spend considerable time on the ground 

taxiing from the terminal out to the runway and back. This leads to a waste of precious time and fuel. 

To optimise the taxiing distances, the flight crew shall choose to reach and leave the runway from intermedi-

ate taxiways when the entire runway length is not necessary according to the take-off and landing performance 

calculations.  

2.1. Taxi procedure at take-off

The standard procedure recommended by ATR requires two-engines taxiing. Indeed, even if fuel economical, 

taxiing with one engine has the following disadvantages: 

 g this procedure is not recommended for uphill slopes or slippery runways 

 g no fire protection from ground staff is available when starting engine away from the ramp

 g  mechanical problems can occur during start up of the other engine, requiring a gate return 

for maintenance and delaying departure time.

2.2. Taxi procedure at landing

FCOM procedures require not less than a defined time before shutting down the engine after landing. The 

cool-down time after reverse operation, prior to shut down has a significant effect on engine life. 

It is thus recommended that once the runway is cleared, engine 1 is feathered, and that once the appropriate 

cooling time has expired, it is shut down, even if the parking stand has not been reached.

When taxiing with one engine shut down, the electrical supply of the hydraulic system is done by one engine only. 

Some precautions have thus to be taken to check that the whole hydraulic system, notably in charge of the braking 

and the steering, remains correctly supplied by the remaining engine. The SOPs have to be changed accordingly. 

Besides, those procedures are absolutely not recommended in case of uphill slopes or slippery runways.
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3. Climb

Depending on speed laws, the climb profiles change. The higher the speed, the lower the climb path, the more time 

spent at low flight level, the longer the climb distance and the more fuel burnt.

Low speed

Cruise level

High speed

Figure B1: Climb profiles

In the FCOM, two climb speeds are proposed: 170kts and 190kts. The difference in fuel consumption between a low-

speed and a high-speed climb to a fixed cruise level is valuable. 

The fuel economy for a climb to FL180 between a 170kts-climb and a 190kts-climb is up to 58kg with an ATR 72-500 

which represents an economy of 26% of the fuel used during the climb phase. 

Table B1: Fuel consumption for different climb profiles for an ATR72-500

58kg fuel saved for 
a climb at low-speed
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4. Cruise

In cruise, the torque set automatically by the power management corresponds to the maximum cruise rate. The use of 

a derated cruise torque, which corresponds to a long-range torque, is advisable in order to save fuel. The fuel economy 

done between a long-range and a max cruise is estimated in Table 3: Reference cases for the fuel consumption. 

The condition to use a derated cruise power is that the corresponding cruise tables for IAS, TAS, TQ, FF are provided 

to the flight crew and that the operational procedures warn the fact the power lever is set out of the notch and that 

the torque management is no longer automatic.

The Module 2 of the FOS, In-flight performance, enables to compute twin or single-engine cruise performance charts, 

with the desired optimum cruise speed. The charts edited are similar to the ones published in the FCOM. 

Another means to save fuel is to shorten the cruise routes. This can be achieved by asking Air Traffic Control for direct 

routings whenever possible in cruise. 

5. Descent

There are two main parameters to act on when willing to lower the fuel burnt for the descent: the speed and the 

descent gradient whose combination determines the thrust required. The influence of both parameters is developed in 

the following paragraphs, and some recommendations are done to optimize at most the fuel consumption.

Whatever the type of descent chosen, a decisive point to consider during the flight management is to optimize the Top 

Of Descent (TOD) in order to reach the approach altitude as close as possible to the initial approach point to avoid 

leveling off far before this point, which is an important waste of fuel. 

5.1. Steep descent

The normal procedure for a descent is to select 3° descent slope and to maintain the IAS by adjusting the 

thrust. Descending at a higher slope enables to save fuel, as less thrust is required for the descent. The TOD occurs 

later and the flight at cruise flight level is longer. 

Figure B2: Descent profiles at given IAS

Besides, at a given gradient of descent, the slower the IAS selected, the less fuel is burnt during the descent, as less 

thrust is required.
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The steeper descent means remaining in cruise 

power longer until the TOD is reached, thus increas-

ing the cruise fuel consumption. However, the fuel 

saved during the descent, as shown in Table 8, 

is more important than the fuel required to cruise 

longer, and on the whole, there is a noticeable fuel 

reduction.

Table B2: Fuel consumption for different descent profiles for an ATR72-500

Flight 

conditions

Airline 

Policy

Trip fuel 

(kg)

Delta

(kg)

Delta

(%)

Trip

time

Delta

(min)

Descent

IAS

(kts)

Delta 

TOD

(Nrm)

Cruise

FL

Steep 

descent

4° slope

Mini time 894 –5 –0.6 1h16 +0 240 +13 180

Mini fuel 813 –13 –1.3 1h21 +1 240 +17 230

Table B3: Fuel saving for a 300Nm trip with ATR72-500 with a steeper descent profile

5.2. Low-thrust descent

To optimize at most the fuel consumption during the descent, the torque should theoretically be reduced until 

the thrust is nil. In this case the propeller is said to be transparent, i.e. the propeller drag is reduced to the 

minimum achievable with a rotating propeller. 

The associated operating procedure is to select a speed and a gradient for descent that requires low thrust to maintain 

them, which means a lower descent torque than the one for standard procedure. 

Let us take the example of the reference 300Nm trip performed with an ATR 72-500.

A descent performed at 4°descent slope and IAS 200kts selected requires low TQ and allows important fuel saving 

compared to the same descent in standard conditions.

The low thrust descent is even more fuel economical than the steep descent when comparing the following values 

with the one from Table 9. However it can lead to operational limitation, as the speed selected for descent is too low 

to fit in with the local airport traffic. 

51kg fuel less 

for a descent 

at a steeper 

gradient

TOD reached 

17Nm later

23kg fuel 

saved for a 

slower descent
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Flight 

conditions

Airline 

Policy

Trip fuel 

(kg)

Delta

(kg)

Delta

(%)

Trip

time

Delta

(min)

Descent

IAS

(kts)

Delta 

TOD

(Nrm)

Cruise

FL

Low-trust 

descent
Mini time 880 –19 –2.1 1h16 +1 200 +13.1 180

4° slope Mini fuel 793 –33 –4.0 1h23 +3 200 +17.3 230

Table B4: Fuel saving for a 300Nm trip with ATR72-500 with a low thrust descent profile

6. Approach
At landing, providing that the particular country’s regulations permit, and when wind conditions allow it, 

the flight crew can request to the Air Traffic Control to change the QFU to shorten the approach procedure. 

Besides, visual approaches are generally shorter than instrument ones. The former have thus to be chosen in priority.

7. How to perform an ecological trip
When combining all the positive effects on fuel consumption detailed in the previous flight preparation and flight man-

agement parts, the resulting fuel saving is considerable. The following figure shows how the adoption of ecological 

reflexes can lead to great fuel economy.

Figure B3: Fuel saving for a 300Nm ecological flight with an ATR 72-500
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The same calculations have been carried out for ATR 42-500 on the same route, with TOW=18t.

Figure B4: Fuel saving for a 300Nm ecological flight with an ATR 42-500

In addition to those actions, other economies can be done during the ground phase, when parked at the ramp or when 

taxiing, especially at congested airports.
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Maintenance

1.  Implications of dispatching under 
MEL and CDL

Operators are provided with a Master Minimum Equipment List (MMEL) that is the basis for their MEL 

(Minimum Equipment List).

The MEL is a valuable tool for optimizing dispatch reliability because it defines the conditions under which the 

aircraft may be dispatched with specified equipment inoperative. The conditions include the period during which 

the aircraft can be operated with the system inoperative and, in some cases, requirements for additional fuel load.

The Configuration Deviation List (CDL) in chapter 7 of the Aircraft Flight Manual (AFM) also allows the aircraft to 

be dispatched with specified components not fitted. All components must be re-installed at the earliest mainte-

nance opportunity (nominally within 1 week, subject to local airworthiness authority approval). For items whose 

loss or failure will bring a fuel consumption penalty it is beneficial to make special efforts to replace them as soon 

as possible.

The following table indicates the MMEL and CDL items that will have a noticeable negative impact on fuel cost.

 System / Component MMEL Condition Remarks

 21-23-1 Flight level is limited No flight level optimization for the trip fuel calculation

 Overboard valve  to FL 170 

 21-23-2 Flight level is limited  No flight level optimization for the trip fuel calculation

 Underfloor valve to FL 170 

 21-23-3 Flight level is limited  No flight level optimization for the trip fuel calculation

 Extract Fan to FL 170  

 21-30-1 Maximum operating  High fuel consumption due to low flight altitude

 Pressurization system altitude 10 000 ft  

 21-50-1 Flight level is limited  An in-flight failure could imply total loss

 Packs to FL 170 of pressurization; fuel consumption at FL100

   must be taken into account to compute the trip fuel.

 21-61-1  If pack is not used, an in-flight failure could imply

 Pack Auto temperature  total loss of pressurization, fuel consumption at

 controls   FL100 must be taken into account to compute

   the trip fuel.

 28-23-1  Alternate route study must be performed taking

 X feed valve   into account the lowest tank value only.  

 32-31-3 Flight with landing 

 Landing gear lever gear down

 retraction system and

 uplocking system  

 31-48-1 Flight level is limited No flight level optimization for the trip fuel calculation

 MFC module 2A to FL 170   

 36-11-2 Flight level is limited An in-flight failure could imply total loss of

 Bleed valves to FL 170 pressurization; fuel consumption at FL100 must be

   taken into account to compute the trip fuel.

Table C1: MEL items impact on fuel consumption
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 System / Component CDL Items Remarks

 32-1, 1bis, 3 & 4 Main gear door Increased drag 

 32-2 Nose gear forward door Refer to 32-31-3 in MEL

 52-1 to 9 Doors Increased drag

 61-1 Propeller spinner Decreased efficiency Increased drag

 79-1 Engine oil cooler flap Refer to 32-31-3 in MEL

Table C2: CDL item impact on fuel consumption

2.  Airframe maintenance
The airframe is a complex shape and includes many panels, doors and flight control surfaces.

In order for the aircraft to perform at its optimum efficiency (i.e. to create the lowest amount of drag), the airframe must 

be free from any irregularities. This means that surfaces should be as smooth as possible, panels and doors should be 

flush with surrounding structure and all control surfaces should be rigged to their specified positions.

Deterioration of the aircraft’s external surface is a normal consequence of its use. One objective of the maintenance 

schedule is to preserve aircraft’s operational efficiency by the most economic means possible. This is achieved through 

inspection, and subsequent repair as necessary, in specified areas at specified intervals. These intervals are the mini-

mum allowable and the industry is constantly seeking to extend all task intervals. Carrying out any maintenance task 

more regularly will inevitably increase maintenance costs. However, in this section we consider tasks that can bring 

considerable reductions in fuel consumption when the need for repair is discovered.

In terms of overall airframe condition (dents, panel gaps, under or over filled panel joints, etc…) particular attention 

should be paid to areas of the airframe that air impinges on first (e.g. forward portion of the fuselage, the nacelles, the 

wings, the fin, etc). 

The following sections highlight airframe problems that are both typical in-service and have a particularly negative 

impact on aerodynamic performance.

2.1. Flight controls

Correct rigging of all flight control surfaces is important to aerodynamic efficiency. Specific caution should be 

paid to the spoiler on upper surface indeed. These flight controls are only occasionally deployed during the flight, but 

are fitted to areas of the wing that are particularly sensitive to imperfections. Such imperfections occur when a spoiler 

is not flush with the wing profile. The effect on aircraft performance varies with the size of the gap.

Refer to: Adjustment of aileron control JIC 27-10-00-ADJ-10000

 Adjustment of rudder control JIC 27-20-00 ADJ-10000

 Adjustment of elevator control JIC 27-30-00 ADJ-10000

 Adjustment of flap control JIC 27-51-00 ADJ-10000

 Adjustment of spoilers control JIC 27-61-00 ADJ-10000

2.2. Wing root fairing panel seals

The aircraft exterior transitions, between the wing root and the fuselage are performed via many fairing panels. 

These panels are not part of the aircraft’s primary structure but they perform an important role in managing the airflow 

in this aerodynamically critical area. Flexible seals, which are sometimes referred to as “Karman seals”, cover gaps 

between the panels and the adjacent wing or fuselage structure.

Refer to:  Removal and installation of wing-to-fuselage fairing JIC 53-93-00 RAI 10000
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2.3.  Moving surface seals

Gaps between the various sections of the aircraft’s structure can disrupt local airflow and this will generate 

unnecessary drag, and have a consequent impact on fuel consumption. Flexible seals are often used to fill exter-

nal gaps between moving surfaces and access panels and their surrounding structure.

The effect on fuel consumption of moving surface seals that are often found missing or damaged in-service, has a 

particularly negative impact on aerodynamic performance.

2.4.  Doors, landing gear doors, 

main landing gear fairing and engine cowls

Mis-alignment or mis-rigging on any doors and main or nose landing gear door will lead to unnecessary drag 

being generated.

Refer to: Pax/crew door adjustment JIC 52-11-00-ADJ-10000

 Flt compt ovhd hatch adjustment JIC 52-22-00-ADJ-10000

 Pax compt emer exit adjustment JIC 52-21-00-ADJ-10000

 Cargo door adjustment JIC 52-31-00-ADJ-10000

 Service door adjustment JIC 52-42-00-ADJ-10000

 MLG doors adjustment JIC 52-81-00-ADJ-10000

 NLG doors adjustment JIC 52-82-00-ADJ-10000

Figure C1: Example of misrigged door

2.5.  Door seal

The passenger, service and cargo doors seals serve a dual function. 

These seals not only fill the gap between the door and its surrounding structure but they also render the door airtight. 

This allows the aircraft to be pressurized efficiently. A damaged, leaking seal allows pressurized cabin air to escape in 

a direction perpendicular to the fuselage skin. The effect on the local airflow can be quite significant. 
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2.6.  Paint condition

Deterioration of the aircraft’s exterior surface is to be expected on any aircraft in service. 

The rate of deterioration can vary with the intensity of the utilization and environmental conditions. Although the thick-

ness of paint is typically around 1/3 millimeter its loss in critical areas of the airframe will upset the local airflow to an 

extent that overall drag can be increased. Particular attention should be paid to the nose and cockpit area and the 

wing upper and lower surfaces.

2.7.  Aircraft exterior cleaning

The natural accumulation of dirt on the aircraft’s external surface will introduce a slight roughness that, overall, 

can induce significant additional drag.

Refer to: g Aircraft exterior cleaning JIC 12-21-11-CLN-10000

2.8.  Airframe repair

Damage to the airframe, due to impact during handling or taxi, or following collision with birds, have to be 

repaired. These repairs generate some additional drag, and add some extra load.

Figure C2: Steps and Gaps at skin joints

Figure C3: Example of repair on the airframe
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3.  Engine maintenance

An enhanced relationship between pilots and maintenance crews can be very beneficial towards engine durability. The 

proper engine handling behaviors will reduce the maximum or sustained engine temperatures towards increased hot 

section life. Some airlines have implemented yearly meetings/training with pilots to enhance awareness and increase 

collaboration.

During normal operations all engines will experience rubbing, thermal stress, mechanical stress, dirt accumulation, 

foreign object ingestion and so on. These effects will eventually result in a measurable decrease in performance.

Figure C4: Example of engine degradations

Typical indicators of engine performance are:

 g  interturbine temperature (ITT) increases as engine efficiency decreases. More fuel is required to achieve a 

given power. An increase in fuel required will typically produce an increase in ITT. Monitoring ITT margin at 

take-off is a good indicator of engine deterioration. This can easily be done using data recorded during the 

flight that is subsequently processed on the ground by engine condition trend monitoring software.

 g  Specific Fuel Consumption (SFC) also typically increases as engine efficiency declines (again, due to the 

need for more fuel to achieve a given power). This SFC degradation has a direct impact on aircraft perfor-

mance in terms of Specific Range and thus on the fuel burnt for a given mission.

The degradation of parameters and the consequences for fuel consumption must be balanced against the significant 

costs that will be incurred when the engine is eventually removed from the aircraft for overhaul. The moment of the 

engine’s overhaul may be postponed through careful maintenance of the engine while it remains on wing.

When the time to remove the engine arrives, the extent and cost of the overhaul and refurbishment must be carefully 

balanced against the improvements in ITT margin and fuel consumption it will bring. These aspects should be carefully 

assessed and regularly reviewed with the engine manufacturer or using the services of one of the many third party 

engine support companies.

Routine monitoring of engine and aircraft performance using the tool provided by the engine manufacturer and Cruise 

Performance Monitoring software (see § A. 3 Cruise performance monitoring) will not only allow long-term performance 

degradation to be assessed but also permit detection of unexpected shifts in engine/aircraft performance. Timely 

detection will allow appropriate maintenance actions to be launched and minimize any additional fuel consumption 

associated with the problem.
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Hours of cycles

Shop visit Shop visit

ITT
Margin

Figure C5: Recovery of the ITT margin, after shop visits

The Performance Recovery Wash is a valuable fuel saving method that should be considered for all operations.

This method uses cleaning agents to wash gas path components followed by a thorough rinse. The purpose is to 

remove baked-on deposits in environments with severe air contaminants. The benefits are a small recovery of ITT 

margin (typically 5 to 8°C) but, more importantly, reducing the accumulation of baked-on deposits with proper wash 

frequency i.e. continuously remove small build-ups. The frequency is a function of environment / mission and varies in 

the field from bi-weekly to monthly or more. 

Typically, operators in harsh environments will have a higher frequency and complement with other washing methods. 

Operators in benign environments tend not to implement this wash method in their program. As a small recovery of 

ITT margin is expected, some operators also perform this wash near the end of the hot section life to further extend 

time-on-wing. 

Engine washing is labor intensive and the washing method(s) and frequency need to be adjusted by trial and error to 

optimize the investment in consideration of hot section life.

Cycles

ITT
Margin

Unwashed

Performance
recovery at each
engine washing

Cumulative
benefits

Figure C6: Performance recovery after engine washing
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For further information on the engine wash, refer to the Pratt&Whitney Maintenance Manual chapter 72-00-00 

Engine Cleaning/Painting.

Figure C7: Wash nozzle connection
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4.  Systems maintenance
Repair of the leaking on the pneumatic system and deicing systems, saves fuel. 

Problems of leaks are identified with the aircraft performance monitoring software (FOS module 5).

Refer to: g Check of bleed duct tightness JIC 36-11-00-CHK-10000

Figure C8: leak inspection 
of the pneumatic duct

Refer to: g  Operational test of regulator and shut off valve

by using fire handle JIC 30-11-61-OPS-10000

Figure C9: Test port 
on the deicing valve
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Conclusion

There are many factors that influence the fuel used by air-

craft, and this report highlights how a combined effort of the 

different actors of the airline, flight dispatchers, pilots and 

maintenance engineer, can lead to considerable saving on 

the fuel burnt each year by an airline, and thus minimizing the 

environmental impact of their fleet. 

ATR has made the choice of advanced technologies providing fuel-efficient aircraft to the airline which is consistent 

with its willing to reinforce its contribution to ensure a sustainable future for the air transport.

Conclusion
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Dear Reader, 

All efforts have been made to ensure the quality of the present document. 

However do not hesitate to inform ATR Flight Operations support of your com-

ments at the following address: flight-ops-support@atr.fr

The Flight Operations Support team
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All reasonable care has been taken by ATC to ensure the accuracy of the present document. 

However this document does not constitute any contractual commitment from the part of ATC which will offer, 

on request, any further information on the content of this brochure. Information in this brochure is the property of ATC 

and will be treated as confidential. No use or reproduction or release to a third part may be made there 

of other than as expressely authorized by ATC.
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